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Correction of Periodic Motion Artifacts Along the 
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Abstract-In magnetic resonance imaging (MRI), periodic motion 

such as normal breathing. causes artifacts that are primarily mani

fested as "ghost" images in the phase encoding direction of the image. 

In this paper. we model the effect of periodic motion of a single slice 

in the direction of the slice selection axis as amplitude modulation of 

the raw data with a motion kernel along the phase encoding direction 

in the Fourier domain. We show that this motion can be detected in 

I-D projections of the raw data along the frequency encoding direc

tion, which in combination with appropriate filtering leads to the re
covery of the motion kernel. Finally, we demonstrate, by means of sim

ulation examples, that significant reductiun in the amplitude of the 

ghost artifacts is obtained, when we filter the image by the inverse of 

the motion kernel. Some issues to be investigated before the technique 

can be used in a clinical environment are mentioned. 

I. INTRODUCTION 

IN MRI, single plane and multiple plane data acquisition 
can last several minutes, which makes the technique 

sensitive to tissue motion and blood flow. Periodic motion 
such as breathing produces undesirable blurring and 
"ghost" images or periodic replications of moving ana
tomic structures. The ghost images can overlap with other 
structures, obscure abnormalities, and generally degrade 
the diagnostic content of the images. A theoretical model 
for periodic motion artifacts was first developed by M. L. 
Wood [1]. He demonstrated that motion in any of the three 
axes (x, y, z) creates ghost artifacts along the phase cn
coding direction in two-dimensional (2-D) Fourier trans
form imaging. 

The artifact suppression methods that have been re
ported in the literature so far are instrumental techniques 
related to novel data acquisition schemes such as ordered 
phase encoding and gradient waveform modification [2], 

[3]. A review of some artifact suppression techniques is 
given in [4]. An algorithmic approach which requires the 
use of specially encoded "navigator" echoes has been re
ported recently [51. The method proposed in this paper is 
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novel in that it is an algorithmic post-processing tech
nique for periodic motion artifact suppression, and does 
not require monitoring of the motion. 

In this paper. we examine periodic motion along the z 
(slice selection) axis and model its effects as amplitude 
modulation of the raw data by a motion kernel along the 
phase encoding direction. The model assumes slow peri
odic movement of a single slice in the z-direction. This is 
a simplification of the actual phenomenon in that our 
model ignores the effect of the structures above and below 
this slice. A study to include these effects into the model 
is being conducted. We review the principles of 2-D Fou
rier transform (spin-warp) MRI in Section JI. A. In Sec
tion II.B, we develop a new model for the effect of peri
odic motion in the slice selection direction on MRI. Based 
on this model, we propose a new algorithm for the detec
tion of the motion parameters and the correction of the 
corresponding motion artifacts in Section II.C. We dem
onstrate the feasibility of the proposed algorithm with 
simulation examples in Section III. 

II. THEORY 

A. Principles of 2-D Fourier Imaging 
A very common MRI data acquisition technique and 

also the one used in this paper is 2-D Fourier imaging [6], 
[7]. In this method, it is the Fourier transform of the final 
image which is actually measured during the acquisition. 
The pulse sequence commences with the simultaneous ap
plication of a 90 degree RF pulse and a z gradient Gz• 
which results in the selection of a slice (Fig. I). 

After the slice has been selected, the signal must be 
spatially encoded in the x and y directions within the slice. 
A second gradient ( G,) applied along the x direction per
mits positions along this direction to be frequency en
coded. A third gradicnt (C\.) applied along the y direc
tion, permits positions alOlig this direction to be phase 
encoded, i.e., it assigns specific phase to the precessing 
nuclei as a function of y-direction. 

A spin echo is recorded following the reverse G, pulse 
as shown in Fig. 1. The process is repeated with a differ
ent C\. every TR seconds until sufficient phase encoding 
steps are recorded. 

Assume that a stationary point source exists at (xo, Yo, 
zo) and it has intrinsic strength mo. The actual strength of 
the point source is mo m (zo) where m (zo) is the excitation 
cross section of the slice. The excitation cross section of 
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Fig. I Pulse sequence. 

the slice depends upon the shape of the gradient of the 
magnetic field and upon the spectrum of the RF excitation 
pUlse. 

Defining as N,. the number of phase encoding steps, N, 
the number of frequency encoding steps, and l' the gy
romagnetic ratio, the acquired MRI signal can be written 
as following [1 J: 

Set, Gp zo) = mom(zo) E,(t) E,(G,) 

. exp [ ( -hi r ( -
2
: G,xu) r 

+ C: t,Yo)G, J) j 
X comb -- ---. rect ---- -_.-

( t G,. ) ( t GI" ) 
ilt' ilG N,ilt' N,.ilG 

* comb ---- -_.-
( t G, ) 

N.t�t' NI" il G ( I ) 

where E, (t) and EI" (t) are apodization functions and * 
denotes convolution. For the sake of convenience we will 
ignore in the following the apodization, rect, and comb 
terms because we assume that the relaxation and sampling 
effects do not contribute to the analysis. Thus S(t, G,., zu) 
can be written as: 

. 

Defining as K, = - (-y 127r) GJ and KI" (-y 121f) tl" G, 
the axes in the raw data domain, (2) can also be written 
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as follows: 

S {K" K,., Zo) = mom(zo)e(-iKdnleC-iK"Ul. (3) 

B. Model for Periodic Motion Along the Slice Selection 
Axis 

Now we assume that the point source is moving period
ically in the z direction and represent its motion by the 
function z (T) where T is the motion time variable. Ex
panding in a Fourier series: 

00 

z(T) = L.; Cne(27rinjiITI (4) 
11 = -00 

where fo = I I T with T the period of the motion. The com
plex coefficients Cll are given by 

r' + T 
cn = J, z(a)el-hinjilul da. (5) 

Because z itself is a function of time T for our moving 
point source, we can write an expression for the magne
tization of the source as a function of time: 

meT) = m(z(T)). (6) 

Because this new function is also periodic we can also 
write it as a Fourier series: 

meT) = L.; d"e(27rinfnT) (7) 
II =-00 

with an expression for the new coefficients d" similar to 
that of equation (5) with the integral now over m (a). Set
ting do = I, dn = (ilmnI2mo)euq,,,), d_" = (ilm_,,1 
2mo) e( -i</>,,) equation (7) becomes: 

m (T) = I + i; ilmn 
cos (27rnfu T + rfJ,,) (8 ) 

n� I mo 

where ilmll refers to change in mass due to the nth har
monic of the periodic motion. Substituting m (T) in (3), 
the expression for the acquired MRI signal for a moving 
point source becomes: 

r ;, ilm" l . L I + '/::'1 mo cos (27rnfoT + rfJn) I ' 

(9) 

We assume that ilmn I mo is less than unity so m ( T) is 
always positive and rfJ" is the phase of the breathing with 
respect to the start of data acquisition for the nth har
monic. In this paper, we will assume that the motion of 
the source is slow compared to data acquisition rates along 
the frequency x-gradient, but that the motion is not slow 
between y-axis phase encodings. The motion time T and 
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K, (or G,) are connected through the following equation 
[2] : 

K, 
T = _. TR 

tJ.K 
( 10) 

where tJ.K are the steps by which K, is incremented and 
TR is the time between phase encoding steps. This equa
tion transforms the independent variable in (8) from T to 
K\" 

. With this change of variables, we may write: 

m (K,.) = 1 + L: --" cos . + 1>" 
00 tJ.m (27rnNhK' ) 

. Il� I mo N,.tJ.K 
(II ) 

where Nb = foN, TR is the number of breathing cycles per 
entire scan. After the change of variables, equation (9) 
becomes: 

;, tJ.m" (27rnNhK\. ) J + L.. - cos + rf>" . 
,,�I mo N,tJ.K 

( 12) 

The final image lex, y), is the inverse Fourier transform 
of the collected data: 

l(x,y) = L, LS(Kx.K\')dKrdK,,, ( 13) 

Replacing S(K" K\.) from ( 12), (13) can be written as: 

( 14) 

Performing the integration over Kr in ( 14) we get 

( 15) 

The above integral is actually the inverse Fourier trans
form of the product m (K,) e( -iK,\\l). According to the con
volution and shift properties of Fourier transform pairs, 
the above equation can be written as 

lex, y) = o(x - xo) (l L mum (K, ) eIiK,y) dK'J 

* o(y - Yo)) ' ( 16) 

Replacing m (K,.) from ( 1 1) I (x, y) becomes 

lex, y) = 

. cos 
. 

el { " I  dK, 
(27rfINI1K,) . .  K .' 

N\.tJ.K . 

"", tJ.m" . ( nNh ) = moo(y) + 2..: - e(I<I>"lo y + 
--

,,�I 2 N,tJ.K 

+ � tJ.m" 
e
(-II/>")o (y 

_ nN" ) . 
,,�I 2 N,.

tJ.
K 

(17 ) 

Therefore, lex, y) consists of an impulse at the origin 
plus smaller and phase shifted "ghost" impulses at a and 
-a where a = nN,,/N\.tJ.K. Thus the ghosts will appear 
only along the phase encoding direction and their distance 
depends upon how many breathing cycles occur during 
the data acquisition. 

We now replace the point source with a stationary in
finitely thin object mb (x, y) within the field of view. If 
the entire object plane is moving periodically in the z di
rection, then from (12) by replacing xc' Yo with x, y and 
integrating over x. y space the acquired signal S (Kx• K\) 
will be: 

l ;, 
tJ.

m 
X 1+ L.. -" 

n=-oo mo 

( 18) 

( 19) 

where by M (K" K\.) we denote the Fourier transform of 
mh(x. y). Note that mb (x, y) denotes the artifact-free im
age. We can also write (19) as: 

(20) 

where w, = 27rNh/ tJ.K. 

C. Estimation of the Motion Kernel and Correction of 
the Motion Artifact 

Equation (20) indicates that the z-motion causes a mod
ulation of the measured data in the K, direction. We at-
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tempt to correct for this modulation by essentially esti
mating specific frequencies along K,. at which excess 
power is located and then suppressing the power at such 
frequencies. 

The detection and removal of the amplitude modulation 
(the term in brackets in equation (20», is done in the fol
lowing steps: 

I) We project the magnitude of the raw data along the 
frequency encoding direction. Let PM denote a projection 
of the magnitude of M(K" K,,) as follows: 

then the projection of the magnitude of the raw data can 
be expressed as: 

(22) 

where the last line substitutes from (20) and (21). 
2) We define the inverse Fourier transform of the pro

jection PM(K,,) as: 

PM(Y') = ) PM(K,) eiK,,' dK, (23) 

then from (22) and (23) the inverse Fourier transform of 
the projection of the magnitude of the raw data is 

l 00 � �mll . 
= PM(Y') * o(y') + � - e"/>"li(y' + nJ,.,) 

1l�1 2mo . 

(24 ) 

where f" = wj27r and the prime on y indicates that we 
have not returned to the original image space by virtue of 
the projection and magnitude operations. 

Our ability to detect in projections the motion-kernel 
frequencies is based on the following assumptions: 

(a) The effect of the motion in thc raw data domain 
can be modeled reasonably well with finitely many terms 
in (8), (b) PM ( y') is highly peaked around the DC term 
with other frequencies at least two orders of magnitude 
below, since PM(K,,) is a magnitude projection and a 
slowly varying function of K,. 

An example is shown in Figs. 2 and 3. As (24) shows, 
the effect of the motion in the inverse Fourier transform 
of the projection is additional impulses, where the mag-

, I 

�6�13--�--�--�--�----��l K. 
Fig. 2. PM(K,). projection of the brain image along K" 

l 

h A , ,/\\ 

Fig. 3. PM( v'). F-' of brain projection, 

) """ 127 

.11.1 

nitude and frequency provide information concerning the 
location and frequency of the breathing artifact. Based on 
the previous assumptions, in this paper we attribute to 
motion those peaks in the magnitude of Pst y'), that are 
at least two standard deviations above the low level base
line, and refer to them as "motion" peaks. 

3) For the estimation of the motion kernel G(KJ, 
we follow an approach that retains phase information: We 
apply a bandreject filter to Pst y'), in order to eliminate 
"motion" peaks. The bandreject filter (BRF) is unity for 



314 IEEE TRANSACTIONS ON MEDICAL IMAGING. VOL. 9. NO, .1. SEPTEMBER 1990 

all y' except for a four-point window around each peak. 
The coefficients of each bandreject window are (1 x 
neighborhood mean /local mean) for the two center points 
and (0.5 x neighborhood mean /loca/ mean) for the two 
others, where by neighborhood mean we mean the mag
nitude of Ps( y') in the vicinity of the "motion" peak. 
This bandreject operation produces an estimate of the pro
jection without motion: 

PM(y') = BRF (y') Ps(Y'). ( 25 ) 
The reason for using the bandreject filter with a four-point 
window, instead of a simple inverse filter of the form 
1/ cos (2  7r ft + rP) is that the single frequency model is 
very sensitive to errors, and sampling in the frequency 
domain may result in the effect that some frequencies of 
the motion may not correspond to the sample frequencies. 

4) We obtain an estimate of the projection without mo
tion artifact, PM(K\.), by taking the Fourier transform of 
PM( y'). 

. 

5) Division of Ps(K,.) with PM(K,) yields an estimate, 
G(K,), for the motion kernel: 

. 

Ps(K,.) • 

PMUq 
= G(K,.) (26) 

Since Ps( K,.) is a motion-degraded projection, it contains 
all the information about the motion phase. Furthermore, 
since PM(K,,) is a "motion-free" projection, the division 
of Ps(K,,) with PM(K,,) yields an estimate G(K,,) that has 
the correct motion phase. 

. 

6) The motion kernel inverse can then be used to mul
tiply the raw data: 

(28) 

7) Finally, the restored image l(x, y) is simply the in
verse transform of the corrected raw data: 

lex, y) = P-I[MCK" K,,)]. (29) 

III . RESULTS 
The steps of our algorithm are summarized in Table 1. 
The image used for the simulations was a motionless 

brain image. The raw data were (128 x 256) and the 
image was obtained by filling with zeros the top and but
tom 64 lines of the raw data and taking the (256 x 256 ) 
inverse Fourier transform. The projection of the raw data 
along the frequency encoding direction, PM(K,.), and its 
inverse Fourier transform are shown in Figs. 2 and 3. We 
see from Fig. 3 that PM( y') is highly peaked around the 
DC and this conforms with our assumption. Note that 
while taking the 128 point projection, the center 14 col
umns are zeroed in order to avoid the dominant de com
ponent at the center for scaling purposes. Ghost artifacts 
were simulated on the image, by mUltiplying the raw data 

TABLE I 

l. Project along J{x =? Ps(f{y) 
2. F-1(Ps(I<y» => PS(y/) 
3. Apply bandreject filter to PS(y/) => PM(Y') 
4. F(PM(Y')) => PM(J{y) 
5. Divide PsCJ(y) with FM(J(y) =? G(J(y) 

6. Multiply S(J{x'!<y) with G-1(I{y) => S(I{x'!{y) 
7. F-1 (S(I{x'!{y» => J(x, y) 

K, 

Fig. 4. G( K,), simulated motion kernel, 

alung the K, axis (phase encoding directiun) with the 
function: (27rK\ ) 

G(K,,) = I + 0. 5 sin U + 0.785 

(27rK" ) + 0.15 sin -6-' + 1.57 

(27rK" ) 
+ 0.05 sin -3-' + 3.141 , (30) 

which is shown in Fig. 4. Note that this corresponds to 
truncating (8) after three terms. We detcct the motion ker
nel and correct for the motion artifacts by following the 
steps described in theory: We project the motion-de
graded raw data along the frequency encoding direction 
and obtain P s (K,.). By taking the inverse Fourier trans
form of the pro.Jection we obtain Ps ( y' ). P s (K,.) and 
Ps( y') are shown in Figs. 5 and 6, respectively. Notice 
the rather broad peaks around fl' f2' and f3 (the locations 
of the frequencies of our motion). This is due tu the fact 
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K. 

Fig. 5. Pst K,). projection of the motion-degraded data along K,. 

Fig. 6. Pst y'), F-1 of P,(K,). 

that none of the three frequencies of our motion kernel is 
exactly divisible with 128 ( the size of our 1FT). There
fore, the energy at f is distributed around the closest in
teger to 128/ f where f is a frequency component of the 
motion kernel. 

In order to eliminate the "motion" peaks and obtain 
PM( y') we apply a bandreject filter to Ps(K,) that elimi
nates II and Iz because they are two standard deviations 
above the baseline. 13 is not being removed because it is 
not above the two standard deviations limit. The bandre
ject filter andpM(Y') are shown in Figs. 7 and 8, respec
tively. The Fourier transform of PM ( y'), provides an es-

1-

o 

3" lxl0 I· 

1\ 
o 

i I 

Fig. 7. BRF. bandreject filter. 

(::. , 

I J r-I I : I II 
I !. 

127 
Fig. 8. PM( v'). product of BRF and Pst y'). 
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timate of the projection without motion artifact, PM(K,.), 
which is shown in Fig. 9. The estimate for the motion 
kernel, G(K,), is obtained by division of Ps( y') with 
PM(Kv), and is shown in Fig. 10. The small deviation 
from i of the ratio G (K,.) / G (K,.) (Fig. 11), shows that 
the motion kernel was estimated with reasonable accu
racy. 

Finally, as shown in steps (6) and (7) of Table I, we 
multiply the raw data with the inverse of the motion ker
nel estimate and the restored image is just the inverse 
Fourier transform of the corrected raw data. In Fig. 12 we 
show the projection of the corrected raw data, which as 
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I ,'I : 

\,\,-

I 

" 
I, ,� I 

��3--------�--�IOr-�----� � K. 

Fig. 9. PM( K,). "filtered" projection. 

K. 
o 

Fig. 10. G(K,). estimated motion kernel. 

expected is the same as PM(K .. ). In Figs. (13), (14), and 
(15) we show, respectively" the original, motion-de
graded, and corrected brain images. In Figs. (16), (17), 
and (18) we show the above images in the same order but 
at higher contrast. 

IV. DISCUSSION 

A simple model for periodic motion of a single slice 
along the slice selection axis shows that the "ghost" im
ages result from amplitude modulation of the raw data. 

i 

J -63 K. 
0 IJ 

Fig. II. Deviation from I of the ratio G(K,.)/G(K,,). 

'''�I 

I 

I 
I I 

�6�3--------�--�IOr-�----�--�"k K. 

Fig. 12. Projection along K, of the restored image i(x, y). 

This modulation can be detected by inspection of the one
dimensional transform of the magnitude of the complex 
data. This is somewhat analogous to the well known cep
stral analysis [8], where a log operation would be applied 
to the magnitude projection. In our case, that log opera
tion is not necessary and does not add to the detectability. 

It is also interesting to note that if we were to take the 
transform of the projection of the power spectrum (mag
nitude square as opposed to the magnitude), then by the 
projection slice theorem this would be equivalent to ex
amining the intensity autocorrelation of the image along 
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(a) (b) (c) (J . ..
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(d) (e) (f) 

Fig. 13. a) Brain image. nonnal contrast. b) Motion·degraded image, nor
mal C(lntrast c) Restored image f(�, y). nonnal contrast. d) Brain im
age. high contrast. e) Motion·degradcd image, high contrast. f) Restored 

image i(x, y), high contrast. 

the y axis. Again, this is not done since the information 
we seek is explicitly on the magnitude spectrum and its 
related functions. The procedure outlined has worked well 
when the artifact is imposed on otherwise motion-free 
clinical scans. A number of issues remain to be explored 
before the technique can be exploited clinically, however. 
Some concerns are: a) periodic versus nonperiodic motion 
in patients, b) shift-invariant versus shift-varying motion, 
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c) minimum detectability of Llrnn / rno in design of bandre
ject filter, d) finite slice-thickness, and contamination of 
the signal from structures in adjacent slices. 

Also, the lack of analogous compensation for the more 
difficult cases of x and y motion may limit the applicabil
ity of this algorithm, since compound motions are likely 
in practice. Research continues on these and related is
sues. The z motion correction algorithm is a preliminary 
step in a large and serious problem in MRI, and the initial 
results are encouraging . 
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